
 
SHAFT WHIRL, CRITICAL SPEEDS & BEAM VIBRATION 

MODULE: MMME2046 DYNAMICS & CONTROL 
 

Shaft Whirl and Critical Speeds 
 
Shaft whirl is a potentially destructive, self-sustaining flexural vibration observed in rotating 
shafts.  It occurs if the rotational frequency of the shaft coincides with a resonant frequency 
for flexural vibration.  These shaft speeds are called critical speeds.  The analysis that 
follows shows that shafts have an infinite number of flexural resonant frequencies, which 
means that they have an infinite number of critical speeds. 
 
A given shaft will be designed to operate with some maximum speed.  Ideally, if this 
maximum design speed is less than the lowest critical speed, whirl will not be a problem.  
Unfortunately, this is not always possible and it is vital to be able to calculate what the 
critical speeds will be.  We will do this by modelling the shaft as a “beam” with a circular 
cross section. 
 
Short case study – High speed drive shaft 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Make your own notes on this 
 
 
 
 
 
 
Other Beam-like Structures 
 
Apart from shafts, many structures exhibit beam-like vibration behaviour.  Examples 
include aircraft wings, helicopter rotor blades and tall chimneys (all of which vibrate in 
response to aerodynamic buffeting) and tall buildings that vibrate significantly during 
earthquakes.  While these are more complex than uniform beams, they exhibit many of the 
same characteristics.  This section of the module will therefore provide good insight into this 
behaviour. 
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Analysis of the Flexural Vibration of Uniform Beams 
 
 
 
 
 
Unlike previous cases, a beam does not consist of discrete masses connected by massless 
springs. Both mass and stiffness are distributed along the length.  A different approach is 

required and we start by considering an infinitesimal element of the beam of length δx. 

 

 
 
 
 
Bending moment - curvature relationship is (1) 
 
Equation for vertical motion :   Downwards is positive 
 
 
 
 
 
 
 (2) 
 
 

If we neglect the rotational moment of inertia of the element1, the equation for rotational 

motion about an axis through the centre of mass of the element is 
 
 
 
 
 

 (3) 
 
 

Substituting for M from (1) into (3) and then for S in (2) we get 

 
 
 (4) 
 
 
This is the governing differential equation for the free vibration of the beam.   
 

                                                 

1  In addition to neglecting the ROTATIONAL INERTIA of the beam, the theory also neglects 

SHEAR DEFORMATION of planes of cross-section.  Both assumptions tend to give an over-

estimate of the natural frequencies of the beam.  While this error is normally small for 
the first few modes, it increases progressively when higher frequencies are evaluated. 
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Equation (4) is a partial differential equation giving the deflection, y, which is a function of 

space x and time t.  The objective in solving the equation will be to find the natural 

frequencies and the corresponding mode shapes. 
 
For free vibration at a natural frequency, the displacement of any point on the beam in the 

y-direction will be sinusoidal, but the amplitude of the vibration will vary along the length.  

We can therefore use as a substitution, 
 
 
 
Substituting into (4), we get 
 
 
 
 
 
 
 
 

For a uniform cross-section, A and I are constant and it is convenient to introduce the so-

called wavenumber, , defined by  

 
(5) 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

The complete solution for Y(x) is therefore 

 
 
 
 
which may be rewritten to give the more convenient form, 
 
 

(6) 
 
 
This is a general equation giving the deflected shape of any beam of uniform cross-

section. It is one of the equations given on the formula sheet.  The constants C1 - C4 need 

to be determined from the boundary conditions at the ends of the beam.  In this module we 
consider 4 basic types of support.  The appropriate boundary conditions are given at the top 
of the next page. 
 
Other types of boundary conditions are considered on page 9. 
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Descriptive terms Diagrammatic Boundary conditions 
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General Approach for Finding the Solutions for Particular Cases 
 

1. Start by identifying the four boundary conditions.  Use     t  x   =  Y  x , t y ωcos , with 

equation (6) to express the boundary condition in terms of Y(x) and its derivatives. 

2. Since each of the boundary condition equations depends on C1 - C4, they can be 

assembled in the form 
 

(7) 
 

where {C} is a vector of the constants C1 - C4 and [Z] is a coefficient matrix. 

 

3. For a valid solution,  det [Z] = 0. 

 
This gives the frequency equation and its roots will give the natural frequencies of 
the beam.   

4. When each root is substituted back into equation (7), the solution vector {C} will 

define the corresponding mode shape when the values are put into equation (6). 
 
 
Note: The help pages on the Moodle site have several resources related to this topic.  

These include a reminder of how to evaluate a 4x4 determinant and some Matlab 
programs that give animated examples of the mode shapes of beams. 
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Frequency equation for particular end conditions 
 

Pinned-pinned  0λsin   L   

Clamped-clamped 01λcoshλcos     L  L   

& free-free 

Clamped-pinned 0λtanhλtan   L    L   

& free-pinned 

Clamped-free 01λcoshλcos      L L   

 

Numerical values of roots, r L, of frequency equations 

 

r 1 2 3 4 5 >5 

Pinned-pinned  2 3 4 5 r 

Clamped-clamped 
& free-free* 

4.730 7.853 10.996 14.137 17.279  (r + 0.5) 

Clamped-pinned 
& free-pinned 

3.927 7.069 10.210 13.351 16.493  (r + 0.25) 

Clamped-free 1.875 4.694 7.855 10.996 14.137  (r – 0.5) 

 

* A free-free beam will also have 2 rigid body modes corresponding to L = 0. 

 

Selecting the values of r L from the above table for the beam of interest, the natural 

frequencies can be found from equation (5).  That is: 
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Example 1 Simply-supported Beam 
 
 
 
 

 The boundary conditions at  x = 0  and at  x = L are 

 
 
 

Since     t  x   =  Y  x , t y ωcos , the boundary conditions become 

 
 
 
 
From equation (6) 
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  x C  +  x  C  +  x  C  +  x  C  =  xY λcoshλsinhλcosλsin 4321

x = 0 x = L
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Look at the help page on the Moodle site if you don’t know what the sinh and cosh functions 

look like. 
 
Hence, at x = 0 
 
 
 
 
 
 
and at x = L 
 
 
 
 

 Assembling the four equations in matrix form; 

 
 
 
 (7) 
 
 
 
 

 This is the particular form of equation (7) for a simply-supported beam.  Expanding the 

determinant of the coefficient matrix and equating to zero gives the Frequency Equation. 
 
 
 
Q1. What are the roots of the equation? 
 

Q2. Can   = 0 ? 

 
 
 
 
 
 
 
 
 
The frequency equation therefore reduces to 
 
 
 

which has roots   πλ rLr     for  r = 1, 2, 3, … 

From equation (5), the natural frequencies are  
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 To find the corresponding mode shapes, substitute the roots into equation (7) and solve 

for the constants C1 - C4 

 
 
 
 

Continue on additional sheets 
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Example 2   VIBRATION OF A CANTILEVER (CLAMPED-FREE) BEAM 
 
 
 
 
 
 

Consider a cantilever that is clamped at x = 0 and free at x = L. 

 

 The boundary conditions are: 
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Since     t  x   =  Y  x , t y ωcos , the end conditions become 

 
 
 

 
 
 
 
 

 Substituting from equation (6) we get (in matrix form), 

 
 
 
 
 (7)  
 
 
 
 
 
This is the particular version of equation (7) for a cantilever beam. 
 
 

 The frequency equation is given by setting the determinant of the coefficients of C1 - 

C4 to zero.  After some manipulation (and noting that a cantilever has no rigid body 

modes), this gives 
 
 
 

There are no closed-form solutions to this equation, so the roots  r L must be obtained 

numerically and are given in the table on page 5.  As before, the natural frequencies can be 

found using equation (5), which is the definition of the wavenumber, . 
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 The mode shapes are obtained by substituting   =  r  into equation (7) and solving 

for the constants C1 - C4. 

 

From (7a) and (7b)  C3 = - C1   and   C4 = - C2 

 
Thus from (7c) or (7d) 
 
 
 
 
 
 
 
 

This gives C2, C3 and C4 in terms of C1, an arbitrary constant.   

 
 

If we choose C1 = 1, the mode shape becomes 

 
 
 
 

When each value of  r is used in this equation, a different deflected shape is obtained. 
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Other Boundary Conditions 
 
Example   Cantilever Beam with a Mass at the Free End 
 
 
 
 
 
 

 The boundary conditions at the clamped end are identical to the previous case.  So, 

0Y  and 0
d

d


x

Y
 at 0x . 

 

However, at Lx  , 0S  and 0M .  To look at the effect that the mass has on the 

vibration of the beam, we use two of the basic principles of Mechanics.  These are 

1. Compatibility of displacements 

2. Equilibrium of forces and moments 
 
Consider first the shear force reaction between the beam and the mass.  The free body 
diagram is 
 
 
 
 
 
 
 
 
 

Compatibility of displacements 
Displacement at the end of the beam is the same 
as the displacement of the mass 
 
Equilibrium of forces 
Shear force on the beam is equal and opposite to 
the force on the mass 

 
 
For the Beam 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For the mass 
 
 
 
 
 

Equating and noting that 
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Now consider the bending moment reaction between the beam and the mass. 
 
 
 
 
 
 
 
Compatibility of displacements Slope at the end of the beam is the same as the 

rotation of the mass 
 
Equilibrium of moments Bending moment on the beam is equal and opposite 

to the bending moment on the mass 
 
For the Beam 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For the mass 
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Collecting the four boundary condition equations together, we have 
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 To set up equation (7) for this system, substitute for  xY  and its derivatives from 

equation (6). 
 

Steps  and  follow as in the previous examples. 

x = L


