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Shaft Whirl and Critical Speeds

Shaft whirl is a potentially destructive, self-sustaining flexural vibration observed in rotating
shafts. It occurs if the rotational frequency of the shaft coincides with a resonant frequency
for flexural vibration. These shaft speeds are called critical speeds. The analysis that
follows shows that shafts have an infinite number of flexural resonant frequencies, which
means that they have an infinite number of critical speeds.

A given shaft will be designed to operate with some maximum speed. Ideally, if this
maximum design speed is less than the lowest critical speed, whirl will not be a problem.
Unfortunately, this is not always possible and it is vital to be able to calculate what the
critical speeds will be. We will do this by modelling the shaft as a "beam” with a circular
cross section.

Short case study - High speed drive shaft
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Make your own notes on this

Other Beam-like Structures

Apart from shafts, many structures exhibit beam-like vibration behaviour. Examples
include aircraft wings, helicopter rotor blades and tall chimneys (all of which vibrate in
response to aerodynamic buffeting) and tall buildings that vibrate significantly during
earthquakes. While these are more complex than uniform beams, they exhibit many of the
same characteristics. This section of the module will therefore provide good insight into this
behaviour.



Analysis of the Flexural Vibration of Uniform Beams
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Unlike previous cases, a beam does not consist of discrete masses connected by massless
springs. Both mass and stiffness are distributed along the length. A different approach is
required and we start by considering an infinitesimal element of the beam of length &x.
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If we neglect the rotational moment of inertia of the element?, the equation for rotational
motion about an axis through the centre of mass of the element is

S%ﬁ- S+§8x 8—X—M+ M+%8x =0
2 oX 2 O0X
oM (3)
oX

Substituting for M from (1) into (3) and then for S in (2) we get

S:

El = —pA <L 4
5 p (4)

This is the governing differential equation for the free vibration of the beam.

1 In addition to neglecting the ROTATIONAL INERTIA of the beam, the theory also neglects
SHEAR DEFORMATION of planes of cross-section. Both assumptions tend to give an over-
estimate of the natural frequencies of the beam. While this error is normally small for
the first few modes, it increases progressively when higher frequencies are evaluated.
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Equation (4) is a partial differential equation giving the deflection, Yy, which is a function of

space X and time t. The objective in solving the equation will be to find the natural
frequencies and the corresponding mode shapes.

For free vibration at a natural frequency, the displacement of any point on the beam in the
y-direction will be sinusoidal, but the amplitude of the vibration will vary along the length.
We can therefore use as a substitution,

y (x,t) = Y(x) coswt
Substituting into (4), we get
d‘Y

dyx*

El cosot = pAwp? Y (x) coswt

d4Y pACOZ
= Y
dx* El (x)

For a uniform cross-section, A and | are constant and it is convenient to introduce the so-
called wavenumber, ), defined by

4= PAw’ (5)
El
4
. Y
togve Y - =2 Y(x)
dx
Take assolution Y (x) = A ¢**
Thus, ¢*Ae® = )*Ag™
at =)
so that a=xAor £iA
The complete solution for Y(X) is therefore
Y(X)I Aiekx + Aze—Xx + ABeiXX + A4e—ikx
which may be rewritten to give the more convenient form,
Y (x) = C,sinAx + C,cosAx + C,sinh Ax + C,coshAx (6)

This is a general equation giving the deflected shape of any beam of uniform cross-
section. It is one of the equations given on the formula sheet. The constants C1 - C4 need
to be determined from the boundary conditions at the ends of the beam. In this module we

consider 4 basic types of support. The appropriate boundary conditions are given at the top
of the next page.

Other types of boundary conditions are considered on page 9.
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Descriptive terms Diagrammatic Boundary conditions
Built-in N P
clamped % % y=0 a—y =0
encastré \ X

Simple support y= 02
hinged _ o7y _
pinned M=0 X2 =0

2
M =0 Z Y=o
X
Free [ ¢ :
_ oy _
S=0 T =
OX
2 : ﬂ =0
1 K OX
Massless slider y 3 o
77 S=0 Y =0
A ¢ oX

General Approach for Finding the Solutions for Particular Cases

1.

Start by identifying the four boundary conditions. Use Yy ( X, t) =Y ( X ) cos wt , with
equation (6) to express the boundary condition in terms of Y(X) and its derivatives.

Since each of the boundary condition equations depends on C: - Ca4, they can be
assembled in the form

[z]ic} = {0} 7)

where {C} is a vector of the constants C1 - C4 and [Z] is a coefficient matrix.

For a valid solution, det [Z] = 0.

This gives the frequency equation and its roots will give the natural frequencies of
the beam.

When each root is substituted back into equation (7), the solution vector {C} will
define the corresponding mode shape when the values are put into equation (6).

Note: The help pages on the Moodle site have several resources related to this topic.

These include a reminder of how to evaluate a 4x4 determinant and some Matlab
programs that give animated examples of the mode shapes of beams.



Frequency equation for particular end conditions
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sihnhAL = O
cosAL coshaiL -1 = 0

tan AL —tanh AL

=0

cosAL coshaiL +1 = O

Numerical values of roots, Ar L, of frequency equations

r 1 2 3 4 5 >5
Pinned-pinned T 27 3n 4n 5n rm

Clamped-clamped | , 534 | 7853 | 10.996 | 14.137 | 17.279 | ~(r+ 0.5) x
& free-free*

Clamped-pinned | 5 o557 | 7069 | 10.210 | 13.351 | 16.493 |~ (r+ 0.25)n
& free-pinned
Clamped-free 1.875 | 4.694 | 7.855 | 10.996 | 14.137 | ~(r- 0.5)=

* A free-free beam will also have 2 rigid body modes corresponding to AL = 0.

Selecting the values of AL from the above table for the beam of interest, the natural

. . . (A,L)* [EI
frequencies can be found from equation (5). Thatis: @, = 2 _A
P
Example 1 Simply-supported Beam
X=0 | 1 X=L
AN A

® The boundary conditionsat X =0 and at X = L are

Since y(x,t) =

From equation (6)

Y(X ) cos wt , the boundary conditions become

Y(x) = C,sin Ax + C, cos Ax + C,sinh Ax + C, cosh Ax

d?y
dx?

Note that :_9 sinh ® = cosh® and

i cosh® = sinh 6
do
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Look at the help page on the Moodle site if you don’t know what the sinh and cosh functions
look like.

Hence, at x =0

andatx =1L

@ Assembling the four equations in matrix form;

0 1 0 1 c,| (o

0 —2 0 % C,| o 7)
sin AL cosAL sinh AL coshiL ||C, 0
—A%sin AL —A%cosAL A%sinh AL A%coshAL|(C,] |0

® This is the particular form of equation (7) for a simply-supported beam. Expanding the
determinant of the coefficient matrix and equating to zero gives the Frequency Equation.

—4)\"sinALsinh AL = 0
Q1. What are the roots of the equation?

Q2. Can A=07?

The frequency equation therefore reduces to

which hasroots A, L =rm forr=1,2,3, ..

rm El
From equation (5), the natural frequencies are @, = (Tj _A forr=1,2,3,....
p

@ To find the corresponding mode shapes, substitute the roots into equation (7) and solve
for the constants Ci - Ca

Continue on additional sheets
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Example 2 VIBRATION OF A CANTILEVER (CLAMPED-FREE) BEAM

x=0 Xx=L
|

W2

Consider a cantilever that is clamped at X = 0 and free at X = L.

® The boundary conditions are:

At x =0, y=0anda—y=0
X
52
At x=L, M=0 ...=—2=0
6x2
83y
and S=0 .=—==0
«3

Since y ( X, t) = Y( X) cos ot , the end conditions become

At x=0, Y=0 and d—Y=0
dx
2 3
At x=1L, u=0 and u=0
d x?2 dx3

@ Substituting from equation (6) we get (in matrix form),

0 1 0 1 C,
) 0 ) 0 C,
—A2sinAL  —A%cosAL AZsinh AL AZcoshAL ||C,
—2%cosAL  A*sinAL  A%coshiL A%sinh AL ||C,

(7)

o O O o

This is the particular version of equation (7) for a cantilever beam.

® The frequency equation is given by setting the determinant of the coefficients of C1 -
Ca to zero. After some manipulation (and noting that a cantilever has no rigid body
modes), this gives

1+ cosAiL coshAL = O
There are no closed-form solutions to this equation, so the roots A L must be obtained

numerically and are given in the table on page 5. As before, the natural frequencies can be
found using equation (5), which is the definition of the wavenumber, A.
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@ The mode shapes are obtained by substituting A = A into equation (7) and solving
for the constants Ci - Ca.

From (7a) and (7b) C3=-Ci and Ca=-C2

Thus from (7c) or (7d)

c, = - sin A, L + sinh A, L c
’ cosA, L + cosha, L ~*

= Gr Cl
This gives C2, C3 and C4 in terms of Ci, an arbitrary constant.
If we choose C1 = 1, the mode shape becomes
Y (x) = sini x — sinh A, x + o, ( cosA, x — coshi, x)

When each value of A r is used in this equation, a different deflected shape is obtained.
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Other Boundary Conditions

Example Cantilever Beam with a Mass at the Free End

Xx=0 X=L

e; Mass m
MofI Iy

P2

® The boundary conditions at the clamped end are identical to the previous case. So,

Y =0 and d—Y:O at x=0.
dx

However, at Xx=L, S#0 and M #0. To look at the effect that the mass has on the
vibration of the beam, we use two of the basic principles of Mechanics. These are

1. Compatibility of displacements
2. Equilibrium of forces and moments

Consider first the shear force reaction between the beam and the mass. The free body
diagram is

] | 'y

S Compatibility of displacements
M ( 1 T ) M Displacement at the end of the beam is the same

as the displacement of the mass

S ] (X t) Equilibrium of forces
Sign conventions yix, Shear force on the beam is equal and opposite to
See Formula Sheet the force on the mass
For the Beam For the mass

I
o

Equating and noting that ©° = 0
X

Bl (dst +MY(L)

pA dx® pAL’
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Now consider the bending moment reaction between the beam and the mass.

] 'y

X=L

Compatibility of displacements Slope at the end of the beam is the same as the
rotation of the mass

Equilibrium of moments Bending moment on the beam is equal and opposite
to the bending moment on the mass

For the Beam For the mass
Slope, G(t):(a—y = aY cos ot
O0X dx

0°0 dy
Therefore, e —o? —J cos ot

t? dx

d?y l,, (AL)" (dY
Equating, [ﬂ %(a} =0
x=L p x=L

Collecting the four boundary condition equations together, we have

Y(0)=0 (a)

dy
Lo=o
&) o

(dSYJ SMOL) v ()=o (c)

dx® ) pAL’
d?y I, (AL)" (dY
> _ M( 4) ( j :O (d)
dx® )., pAL \dx) |

@ To set up equation (7) for this system, substitute for Y(X) and its derivatives from
equation (6).

Steps @ and @ follow as in the previous examples.



